Performance of Random Space-Time Precoded Integer Forcing over Compound MIMO Channels

Elad Domanovitz and Uri Erez

Tel Aviv University
ICSEE 2016, November 18th

Introduction

- The Single-User Multiple-Input Multiple-Output (MIMO) Gaussian channel has been the focus of extensive research

$$
\boldsymbol{y}_{c}=\mathbf{H}_{c} \boldsymbol{x}_{c}+\boldsymbol{z}_{c}
$$

- $\mathbf{x}_{c} \in \mathbb{C}^{N_{t}}$ is the channel input vector
- $\mathbf{y}_{c} \in \mathbb{C}^{N_{r}}$ is the channel output vector
- H_{c} is an $N_{r} \times N_{t}$ complex channel matrix
\rightarrow Fixed over entire block length
- $z_{c} \sim \operatorname{CSCN}(0, \mathbf{I})$
- Power constraint: $\mathbb{E}\left(\boldsymbol{x}_{\boldsymbol{c}}{ }^{H} \boldsymbol{x}_{\boldsymbol{c}}\right) \leq N_{t} \cdot \mathrm{SNR}$

Introduction

- The MIMO Gaussian broadcast channel has also been widely studied for well over a decade now:

$$
\boldsymbol{y}_{c}^{i}=\mathbf{H}_{c}^{i} \boldsymbol{x}_{c}+\boldsymbol{z}_{c}^{i}
$$

- Private (only) Messages vs. Common (only) Messages
- Capacity is known for both scenarios
- Practical schemes?
- Private Message $\sqrt{ }$ (DPC: Tomlinson...)
- Common Message?
\Longrightarrow Single user: SVD or QR+SIC
\Longrightarrow Two users: Solved using joint triangularization (Khina '12)
\Longrightarrow Moderate \# of users: Extensions exist, not optimal (Khina '12)
\Longrightarrow Infinite \# of users (knowing only WI-MI): Approximate joint triangularization is not very good \Longrightarrow Topic of this talk

Objective

- Can we find a scheme that is:
- Practical
- Linear complexity in the block length
- Uses off-the-shelf SISO codes
- Has good provable performance guarantees
- Universal: Is good for all channels with same WI-MI (compound channel setting), i.e., $\mathbf{H}_{c} \in \mathbb{H}\left(C_{\text {WI }}\right)$
- Universal \Longrightarrow needs to deal with DoF mismatch

Candidate Scheme for OL-MIMO Broadcast: Integer Forcing

- Equalization scheme introduced by Zhan '10, et. al.

- Idea: Decode linear combination of messages \Longrightarrow Invert

Integer-Forcing Equalization: Basic Idea

- Consider the (SU) channel

$$
\mathbf{H}=\left[\begin{array}{ll}
2 & 1 \\
1 & 1
\end{array}\right]
$$

- At high SNR linear receiver front-end inverts the channel (ZF) thus resulting in noise amplification

$$
\mathbf{H}^{-1}=\left[\begin{array}{cc}
1 & -1 \\
-1 & 2
\end{array}\right] \Longrightarrow \sigma_{1}^{2}=2, \sigma_{2}^{2}=5
$$

- Can we avoid noise amplification?
- IF idea: If all streams are coded with same linear code \Longrightarrow Integer \times Codeword + Integer \times Codeword $=$ Codeword
- However, normal channels do not consist only of integers
- Integer Forcing (IF) equalization equalize the channel to he "nearest" integers-only matrix

Candidate Scheme for OL-MIMO Broadcast: Integer Forcing

- What is already known?
- Ordentlich '15, et. al. (single-user Open-Loop):
- Rx side - Integer forcing equalization
- Tx side - Specific space-time linear precoding

A linear Non-Vanishing Determinant (NVD) precoder achieves the mutual information up to a constant gap for any channel
: : Guaranteed gap to capacity is quite large \Longrightarrow doesn't provide satisfactory performance guarantees at moderate rates

- Domanovitz '16, et. al. (single-user Open-Loop):
- Rx side - Integer forcing equalization
- Tx side - Random unitary space-only linear precoding Universal bound for scheme outage
- Random unitary space-time linear precoding ?

Bad Channels for IF/Linear Equalization

Figure: PDF of 2×2 Rayleigh channels normalized to $\mathrm{WI}=8$ bits

- Worst channel $\mathbf{H}_{\text {worst }}=\left[\begin{array}{ll}0 & 0 \\ 0 & 1\end{array}\right]: \quad$ one stream \longrightarrow

Combating Bad Channels via Random Precoding

- What can we do against nature?
- Apply random precoding

Figure: PDF of Random Unitary Precoding to $\mathbf{H}_{\text {worst }}$

- No precoding can salvage linear eq. when channel is singular
- IF copes well with channel being singular

Combating Bad Channels via Random Precoding

- What can we do against nature?
- Apply random precoding

Figure: PDF of Random Unitary Precoding to $\mathbf{H}_{\text {worst }}$

- Precoding over a time-extended channel \Longrightarrow "tail" of the PDF decays faster \Longrightarrow improve the WC outage probability.

Compound MIMO Channel Model

- \mathbf{H}_{c} is part of the compound channel $\mathbb{H}\left(C_{\text {WI }}\right)$
- Mutual information of the compound channel is maximized by a Gaussian input with covariance matrix \mathbf{Q} :

$$
C=\max _{\mathbf{Q}: \operatorname{Tr} \mathbf{Q} \leq N_{t} S N R} \log \operatorname{det}\left(\mathbf{I}_{N_{r} \times N_{r}}+\mathbf{H}_{c} \mathbf{Q} \mathbf{H}_{c}^{T}\right)
$$

- We set SNR $=1 \Longrightarrow \mathbf{H}_{c}=\mathbf{H}_{c} \sqrt{\text { SNR }}$, taking $Q=I_{N_{t} \times N_{t}} \Longrightarrow$ $C_{\mathrm{WI}}=\log \operatorname{det}\left(\mathbf{I}_{N_{r} \times N_{r}}+\mathbf{H}_{c} \mathbf{H}_{c}^{T}\right)$
- Define:

$$
\mathbb{H}\left(C_{\mathrm{WI}}\right)=\left\{\mathbf{H}_{c} \in \mathbb{C}^{N_{r} \times N_{t}}: \log \operatorname{det}\left(I+\mathbf{H}_{c}^{T} \mathbf{H}_{c}\right)=C_{\mathrm{WI}}\right\}
$$

Compound MIMO Channel Model

- PDF figures \Longrightarrow for most precoding matrices good performance, however there is a tail (outage)...
- In contrast to Rayleigh channel all channels in the compound class has same mutual information \Longrightarrow Define (scheme outage) probability which is taken w.r.t. random precoding ensemble, not w.r.t. to channel statistics
- Instead of constant gap, our target is to bound the worst-case scheme outage. For example, in case of space-only random precoding

$$
P_{\text {out }}^{\mathrm{WC}}\left(C_{\mathrm{WI}}, R\right)=\sup _{\mathbf{H}_{c} \in \mathbb{H}\left(C_{\mathrm{WI}}\right)} P\left(R_{\mathrm{IF}}\left(\mathbf{H}_{c} \cdot \mathbf{P}_{c}\right)<R\right)
$$

- When \mathbf{P}_{c} is drawn from CUE \Longrightarrow channels with equal eigenvalues have equal outage probability

Space-Time Precoding

- A block of T channel uses is processed jointly so that the $N_{r} \times N_{t}$ physical MIMO channel is transformed into an aggregate $N_{r} T \times N_{t} T$ MIMO channel
- The equivalent channel is

$$
\overline{\boldsymbol{y}}_{c}=\mathcal{H}_{c} \overline{\boldsymbol{x}}_{c}+\overline{\mathbf{z}}_{c}
$$

where $\overline{\boldsymbol{x}}_{c} \in \mathbb{C}^{N_{t} T}, \overline{\boldsymbol{y}}_{c}, \overline{\boldsymbol{z}}_{c} \in \mathbb{C}^{N_{r} T}$ and

$$
\mathcal{H}_{c}=\mathbf{I}_{T \times T} \otimes \mathbf{H}_{c}=\left[\begin{array}{cccc}
\mathbf{H}_{c} & 0 & \cdots & 0 \\
0 & \mathbf{H}_{c} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \mathbf{H}_{c}
\end{array}\right]
$$

Space-Time Precoding

- In our framework, two levels of precoding are applied.
- \mathbf{P}_{c} is applied to the physical channel (similar to space-only precoding)
- $\mathbf{P}_{s t, c}$ is applied to the time-extended channel
- The equivalent channel is

$$
\overline{\boldsymbol{y}}_{c}^{P}=\mathcal{H}_{c}^{P} \mathbf{P}_{s t, c} \overline{\mathbf{x}}_{c}+\overline{\mathbf{z}}_{c}
$$

where

$$
\mathcal{H}_{c}^{P}=\mathbf{I}_{T \times T} \otimes \mathbf{H}_{c} \mathbf{P}_{c}=\left[\begin{array}{cccc}
\mathbf{H}_{c} \mathbf{P}_{c} & 0 & \cdots & 0 \\
0 & \mathbf{H}_{c} \mathbf{P}_{c} & \cdots & 0 \\
\vdots & \vdots & \ddots & 0 \\
0 & 0 & \cdots & \mathbf{H}_{c} \mathbf{P}_{c}
\end{array}\right]
$$

- We assume that both precoding matrices are unitary

Space-Time Precoding

Space-Time Precoding

- WI-MI of this channel (normalized per channel use)

$$
\frac{1}{T} \log \operatorname{det}\left(\mathbf{I}+\left(\mathcal{H}_{c}^{P} \mathbf{P}_{s t, c}\right)\left(\mathcal{H}_{c}^{P} \mathbf{P}_{s t, c}\right)^{H}\right)=C_{\mathrm{WI}}(\mathbf{H}) .
$$

- WC scheme outage is defined as

$$
P_{\mathrm{out}}^{\mathrm{WC}}\left(C_{\mathrm{WI}}, R\right)=\sup _{\mathbf{H}_{c} \in \mathbb{H}\left(C_{\mathrm{WI}}\right)} P\left(\frac{1}{T} R_{\mathrm{IF}}\left(\mathcal{H}_{c}^{P} \cdot \mathbf{P}_{s t, c}\right)<R\right),
$$

- ε-outage capacity $R\left(\mathbf{P}_{s t, c} ; \varepsilon\right)$ is defined as the rate for which

$$
P_{\mathrm{out}}^{\mathrm{WC}}\left(C_{\mathrm{WI}}, R_{\mathrm{IF}}\left(\mathbf{P}_{s t, c} ; \varepsilon\right)\right)=\varepsilon
$$

- The transmission efficiency is defined as

$$
\eta_{\varepsilon}\left(C_{W I}, \mathbf{P}_{s t, c}\right)=\frac{R_{\mathrm{IF}}\left(\mathbf{P}_{s t, c} ; \varepsilon\right)}{C_{W I}}
$$

Space-Time Precoding

- Candidate precoding schemes
- Orthogonal space-time block code (IF becomes superfluous)
- Algebraic space-time block codes
- 2×2 Golden
- 4×4 Perfect code, punctured perfect code, MIDO
- Random space-time block code
- $\mathbf{P}_{s t, c}$ is drawn from the CUE (hence \mathbf{P}_{c} is redundant)

Space-Time Precoding: 2 Tx Antennas

A Closer Look at Random vs. Algebraic Space-Time

 Rotation

Upper Bound via ML

- ML decoder where each stream is coded using an independent Gaussian codebook
- Let \mathbf{H}_{S} denote the submatrix of $\mathcal{H}_{c}^{P} \mathbf{P}_{s t, c}$ formed by taking the columns with indices in $S \subseteq 1,2, \ldots, N_{t} T$

$$
R_{\mathrm{JOINT}, \mathrm{ST}}=\frac{1}{T} \min _{S \subseteq 1,2, \ldots, N_{t} T} \frac{N_{t} T}{|S|} \log \operatorname{det}\left(\mathbf{I}_{S}+\mathbf{H}_{S} \mathbf{H}_{S}^{H}\right)
$$

Figure: Approximate WC PDF (Monte carlo simulation) of joint ML

Space-Time Precoding: 2 Tx Antennas

A Lower Bound on the performance of ML for $\mathrm{Nr} \times 2$

$$
R_{\mathrm{JOINT}, \mathrm{ST}}=\frac{1}{T} \min _{S \subseteq 1,2, \ldots, N_{t} T} \frac{N_{t} T}{|S|} \log \operatorname{det}\left(\mathbf{I}_{S}+\mathbf{H}_{S} \mathbf{H}_{S}^{H}\right)
$$

$$
\mathcal{H}_{c}^{P} \mathbf{P}_{s t, c}=\mathbf{U D V}^{H}
$$

$$
\left[\begin{array}{cccccc}
D 1 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & 0 & 0 & \ddots & 0 \\
0 & \cdots & D 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & D 2 & \cdots & 0 \\
\vdots & \ddots & 0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & 0 & \cdots & D 2
\end{array}\right]\left[\begin{array}{cccc}
\mathbf{V}_{1,1} & \mathbf{V}_{1,2} & \cdots & \mathbf{V}_{1, N_{t} T} \\
\vdots & \vdots & \cdots & \vdots \\
\mathbf{V}_{\frac{N_{t} T}{2}, 1} \\
\mathbf{V}_{\frac{N_{t} T}{2}+1,1} \\
\vdots & \mathbf{V}_{\frac{N_{t} T}{2}, 2} & \cdots & \mathbf{V}_{\frac{N_{t} T}{2}, N_{t} T} \\
\mathbf{V}_{\frac{N_{t} T}{2}+1,2} & \cdots & \mathbf{V}_{\frac{N_{t} T}{2}+1, N_{t} T} \\
\vdots & \cdots & \vdots \\
\mathbf{V}_{N_{t} T, 1}
\end{array}\right] \begin{aligned}
& \mathbf{V}_{N_{t} T, 2} \\
& \cdots
\end{aligned}
$$

A Lower Bound on the performance of ML for $\mathrm{Nr} \times 2$

$$
R_{\mathrm{JOINT}, \mathrm{ST}}=\frac{1}{T} \min _{S \subseteq 1,2, \ldots, N_{t} T} \frac{N_{t} T}{|S|} \log \operatorname{det}\left(\mathbf{I}_{S}+\mathbf{H}_{S} \mathbf{H}_{S}^{H}\right)
$$

$$
\mathcal{H}_{c}^{P} \mathbf{P}_{s t, c}=\mathbf{U D V}^{H}
$$

$$
\left[\begin{array}{cccccc}
D 1 & 0 & 0 & 0 & \cdots & 0 \\
\vdots & \ddots & 0 & 0 & \ddots & 0 \\
0 & \cdots & D 1 & 0 & \cdots & 0 \\
0 & \cdots & 0 & D 2 & \cdots & 0 \\
\vdots & \ddots & 0 & 0 & \ddots & 0 \\
0 & \cdots & 0 & 0 & \cdots & D 2
\end{array}\right]\left[\begin{array}{ccc}
\hline \mathbf{V}_{1,1} & \mathbf{V}_{1,2} & \cdots \\
\vdots & \vdots \\
\cdots & \mathbf{V}_{1, N_{t} T} \\
\cdots & \vdots \\
\mathbf{V}_{\frac{N_{t} T}{2}, 1} & \mathbf{V}_{\frac{N_{t} T}{2}, 2} \\
\hline \mathbf{V}_{\frac{N_{t} T}{2}+1,1} & \mathbf{V}_{\frac{N_{t} T}{2}+1,2} \\
\vdots & \vdots & \mathbf{V}_{\frac{N_{t} T}{2}, N_{t} T} \\
\cdots & \mathbf{V}_{\frac{N_{t} T}{2}+1, N_{t} T} \\
\cdots & \vdots \\
\mathbf{V}_{N_{t} T, 1} & \mathbf{V}_{N_{t} T, 2} & \cdots \\
\cdots & \mathbf{V}_{N_{t} T, N_{t} T}
\end{array}\right]
$$

A Lower Bound on the performance of ML for $\mathrm{Nr} \times 2$

- When $D 1 \neq D 2$ columns are not orthogonal...
- Sketch of theorem (lower bound on ML performance)
- Each sub-matrix is a part of a unitary matrix
- The eigenvalues of this sub-matrix (taken from square unitary matrix) has a Jacobi distribution
- We use a bound on the determinant of the sum of positive definite matrices
- We use union bound to overcome dependence between two sub matrices
- For a given S, we use union bound to cover all options to select S columns
- We go over all options for S and take the minimum
- The outcome is a closed form expression that can be calculated numerically

A Lower Bound on the performance of ML for $\mathrm{Nr} \times 2$

Space-Time Precoding: 4 Tx Antennas

